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Abstract. The low-velocity limit of the classical Bohr stopping model is investigated by applying non-
perturbative methods. For the repulsive Coulomb interaction between a heavy projectile and a harmonically
bound electron, the stopping cross-section S+(v) is found to scale as v5/3 in the limit of v → 0, where v is
the projectile velocity. This scaling is obtained by establishing a corresponding scaling law for the energy
transfer T+(v, b) in a single collision with an impact parameter b, namely, that T+/v1/3 is a function of a
scaled variable b/v2/3. For the opposite case of the Coulomb attraction, direct numerical calculations reveal
that the energy transfer T−(v, b) exhibits sharp resonances along the b axes when v becomes sufficiently
small. The latter results in a characteristic non-regular behaviour of S−(v) near maximum. Suitable fitting
formulae are proposed for the corresponding stopping numbers L±(v).

PACS. 34.50.Bw Energy loss and stopping power – 52.40.Mj Particle beam interactions in plasmas

1 Introduction

The famous Bohr formula [1],

dE

dx
= −4πZ2

1e4

mv2
ne ln

CB mv3

|e2Z1|ω , (1)

CB =
2

exp(γ)
= 1.1229,

(γ = 0.577 . . . is the Euler’s constant) for the energy
loss by a fast point-like charge Z1e moving with a non-
relativistic velocity v through neutral matter was derived
on the basis of a simple (but very fruitful) classical model:
the projectile Z1e looses its energy in random collisions
with electrons (charge −e, mass m) bound harmonically
in classical oscillators with an eigenfrequency ω. In the
simplest case, a heavy projectile is considered, whose mass
M1 � m does not enter the expression for the stopping
force. Evidently, the Bohr formula (1) can only be used
for

v > vs =

(∣∣Z1e
2
∣∣ ω

m

)1/3

, (2)

where it represents the first term in the asymptotic ex-
pansion with respect to a large parameter v/vs.

With the advent of quantum mechanics, the applica-
bility of the Bohr formula was restricted by the condition

αv =
|e2Z1|

�v
� 1 (3)
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of not too high projectile velocities. In addition, the os-
cillator frequency ω was replaced by the mean atomic fre-
quency 〈ω〉 defined as

Z2 ln〈ω〉 =
∑

n

fn ln ωn, (4)

where Z2 is the atomic number of the target atom, ωn

and fn are the frequencies and oscillator strengths of the
dipole transitions from the ground state [2,3]. Ironically,
the behaviour of the Bohr stopping force in the limit of
low velocities, v � vs, appears to have remained unknown
until now.

In his original work [1] Bohr derived equation (1)
for v � vs by combining two asymptotic expressions
for the energy transfer T (b) at a given impact parame-
ter b, namely, Td(b) for distant collisions obtained in the
dipole approximation for a perturbed oscillator, and the
Rutherford value TR(b) for close collisions, where the os-
cillator binding can be ignored. Recently Sigmund [4] pro-
posed to extend Bohr’s calculation to v < vs in a straight-
forward manner, by calculating the crossover point b = b×
between Td(b) and TR(b) and applying either of them in
the corresponding region. One can hardly expect that such
a procedure would lead to a correct answer because both
expressions for T (b), calculated by Bohr within a per-
turbative approach for v � vs, become inapplicable at
v < vs.

Here, in contrast to reference [4], a non-perturbative
analysis is applied. It is found that the two cases of the
repulsive and attractive interaction between the projec-
tile and the target electron are qualitatively and quantita-
tively quite different (the Barkas effect). For the repulsion
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case, it is shown that the stopping cross-section S+ be-
comes asymptotically proportional to v5/3 as v → 0 (cf.
S± ∝ v3.3 in Ref. [4]). The numerically calculated values of
the stopping number L±(v) are approximated by suitable
analytical formulae.

The present results for the low-velocity Bohr stopping
power of charged particles may be of particular interest for
antiprotons and other antinuclei decelerated in ordinary
matter because no recombination occurs onto antinuclei
at low velocities.

2 Parametrization of the problem

In the binary collision approach, the stopping force
−dE/dx is often expressed in terms of the stopping cross-
section

S = − 1
ne

dE

dx
(5)

(per one electron in our case), which can be calculated as
an integral

S = 2π

∞∫
0

T (b) b db (6)

of the energy transfer T (b) in a single collision with an
impact parameter b.

In the Bohr model, the stopping cross-section S for a
heavy projectile (M1 � m) can only be a function of the
following four dimensional parameters,

Z1e
2, m, ω, v. (7)

The product Z1e
2 of the projectile and electron charges

can be either positive (Coulomb repulsion) or negative
(Coulomb attraction). One can choose the first three of
these parameters — all having independent dimensions —
as a basis for a new system of units, which is particularly
suitable for the problem considered here. Then, the units
of length, time and mass become

[l] = bs =

(∣∣Z1e
2
∣∣

mω2

)1/3

, [t] = ω−1, [m] = m; (8)

the unit of velocity, vs = bsω, is given by equation (2); the
unit of the stopping cross-section is given by

[S] = mv2
s b2

s =
Z2

1e4

mv2
s

. (9)

For Z1 = 1 and �ω = 2 Ry our units coincide with the
atomic units. Below, when given in units (8), the physical
quantities are marked with a bar.

Clearly, the dimensionless stopping cross-section S̄ =
S/[S] is a universal function of only one variable — the
dimensionless velocity v̄ = v/vs. More precisely, there are
two functions, S̄+(v̄) and S̄−(v̄), corresponding to the two
possible signs of the product Z1e

2. Based on the high-
velocity limit, the functions S̄±(v̄) are usually cast in the
form

S̄±(v̄) = 4π v̄−2 L±(v̄), (10)

where L± becomes the Coulomb logarithm at v̄ � 1. Ear-
lier, such dimensional considerations have been formulated
in a somewhat different form by Lindhard [5]. Often (as,
for example, in Ref. [4]) the parameter ξ = v̄3 is used
instead of v̄.

3 Bohr’s solution for v � vs

Bohr [1] calculated the leading term in the asymptotic
expansion of S̄±(v̄) for v̄ � 1, namely

L+(v̄) = L−(v̄) = ln
(
CB v̄3

)
. (11)

More specifically, he observed that for collisions with im-
pact parameters b̄ � b̄0 = v̄−2 one can apply a dipole
approximation and calculate

T̄ (b̄, v̄) = T̄d(b̄, v̄) =
2
v̄4

[
K2

0

(
b̄

v̄

)
+ K2

1

(
b̄

v̄

)]
, (12)

whereas for b̄ � b̄ad = v̄ one can ignore the oscillator
binding and use the Rutherford scattering result

T̄ (b̄, v̄) = T̄R(b̄, v̄) =
2v̄2

1 + (b̄v̄2)2
; (13)

here K0(x) and K1(x) are the modified Bessel functions
in the usual notation [6]. In conventional units, the im-
pact parameter b0 of scattering by 90◦, and the adiabatic
(dynamic screening) radius bad are given by

b0 =

∣∣Z1e
2
∣∣

mv2
, bad =

v

ω
. (14)

Bohr’s calculation has revealed that for v̄ � 1 the main
contribution to the stopping cross-section S comes from
the impact parameter range b0 � b � bad, where both
the dipole approximation and that of the free Rutherford
scattering are valid. We will see that in the opposite limit
of v̄ � 1 the dominant contribution to S comes from the
range of b values, where none of these approximations is
applicable.

Much of the subsequent analysis will be based on a
distinction between the adiabatic and non-adiabatic col-
lisions. In adiabatic collisions, occurring at b > bad, the
characteristic timescale ∆tc of variation of the external
force acting on the harmonically bound electron is larger
than ω−1. Expression (12) tells us that the energy transfer
in the adiabatic collisions is exponentially small, i.e.

T̄ (b̄, v̄) ≈ 2π

v̄3b̄
exp

(−2b̄/b̄ad

)
. (15)

4 Non-perturbative approach

In classical mechanics, the collision of a heavy point charge
with a harmonically bound electron is described by two
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relatively simple equations of motion

¨̄x = −x̄ + δ1
x̄ − v̄t̄

R̄3

¨̄y = −ȳ + δ1
ȳ + b̄

R̄3
, (16)

where the double dot denotes the second derivative with
respect to t̄,

δ1 =

{
+1, Z1e

2 > 0,

−1, Z1e
2 < 0,

(17)

and
R̄ =

[
(x̄ − v̄t̄)2 + (ȳ + b̄)2

]1/2
(18)

is the distance between the electron and the projectile.
It is assumed that the collision occurs in the (x, y)-plane,
with x(t), y(t) being the coordinates of the electron as
measured with respect to the motionless oscillator cen-
ter. The projectile moves along the x-axis and has the
coordinates {xp, yp} = {vt, −b}, where b is the impact
parameter with respect to the oscillator center.

Here an idealized case is considered, where the binding
force of the three-dimensional oscillator extends to infinity.
Clearly, in such a case no charge transfer can occur. If the
electron is at some time captured by the moving projectile,
it will later be torn off by the infinitely growing oscillator
force. Then, the energy transfer T̄ in a single collision can
be calculated by solving equations (16) with the initial
conditions

x̄ = ˙̄x = ȳ = ˙̄y = 0 (19)

at t̄ = −∞, and evaluating

T̄ (v̄, b̄) =
1
2

(
x̄2 + ˙̄x2 + ȳ2 + ˙̄y2

)
(20)

at t̄ = +∞. Despite certain technical difficulties, equa-
tions (16) can be solved numerically for most of the pa-
rameter range of practical interest, and the results of such
calculations are presented below.

5 Adiabatic collisions

5.1 Equilibrium point

First of all consider collisions that occur in the adiabatic
regime, i.e. at impact parameters b̄ > b̄ad. This will allow
us to determine the value of b̄ad for v̄ � 1.

In the course of a collision, the electron moves in a
time-dependent potential

Ū(t̄, x̄, ȳ) =
1
2
(x̄2 + ȳ2) +

δ1

R̄
, (21)

where R̄ = R̄(t̄, x̄, ȳ) is given by equation (18). If the colli-
sion is adiabatic, the electron stays in the immediate vicin-
ity of the equilibrium point (e.p.), which corresponds to
the local minimum of the potential (21) associated with

O

r
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r
1

b

-vt

θZ
1
e

-e,m

y

x

Fig. 1. Schematics of a collision between a projectile Z1e and
an electron −e, m bound harmonically to the origin O of the
coordinate system. Thick grey closed curve shows the trajec-
tory of the equilibrium point for δ1 = +1, b̄ = 0.5.

x = y = 0 at t = ±∞. The trajectory of the e.p. is easily
found to be given by

x̄ep(t̄) = − v̄t̄

r̄1
ϕ(r̄1),

ȳep(t̄) =
b̄

r̄1
ϕ(r̄1), (22)

where
r̄1 =

(
b̄2 + v̄2 t̄2

)1/2
(23)

is the distance between the oscillator center and the pro-
jectile, and the dimensionless function ϕ(r̄1) is defined by
the equation

ϕ(r̄1 + ϕ)2 = δ1. (24)

Figure 1 shows an example of the e.p. trajectory for δ1 =
+1; more details about the properties of function ϕ(r̄1)
are given in the Appendix.

For a fixed time t̄, the potential (21) can be expanded
in the vicinity of the e.p., which allows to calculate the
two normal frequencies

ω̄2
‖ = 1 +

2δ1

[r̄1 + ϕ(r̄1)]
3 = 1 + 2δ1 |ϕ(r̄1)|3/2

, (25)

ω̄2
⊥ = 1 − δ1

[r̄1 + ϕ(r̄1)]
3 = 1 − δ1 |ϕ(r̄1)|3/2

, (26)

of small oscillations around the e.p. The normal coordi-
nates of these oscillations lie, respectively, along and per-
pendicular to the vector rep = {xep, yep}.

Since in adiabatic collisions |ϕ(r̄1)| = |r̄ep| = r̄ep is es-
sentially the displacement of the electron from its original
position, and because the condition |ϕ(r̄1)| � b̄ of applica-
bility of the dipole approximation is equivalent to b̄ � 1,
only adiabatic collisions with b̄ � 1 can be treated in the
dipole approximation. For such collisions ω̄‖ = ω̄⊥ = 1, i.e.
ω‖ = ω⊥ = ω. For close adiabatic collisions with b̄ � 1
the dipole approximation is not applicable, and one has
to take into account strong deviations of the eigenfrequen-
cies (25), (26) from the unperturbed values ω̄‖ = ω̄⊥ = 1.
This argument applies to adiabatic collisions at any colli-
sion velocity 0 < v̄ < ∞.
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Applicability of the dipole approximation to non-adia-
batic collisions should, strictly speaking, be analyzed sep-
arately. For v̄ � 1 the answer is known: all collisions with
b̄ � v̄−2 can be treated in the dipole approximation. As it
will be clear from the subsequent analysis, the dipole ap-
proximation never applies to non-adiabatic collisions with
v̄ � 1.

5.2 Criterion of adiabaticity

Now we want to determine the impact parameter bad sep-
arating adiabatic collisions from the non-adiabatic ones.
For v̄ � 1 the answer is b̄ad = v̄. To find bad for v̄ � 1,
we need a general criterion for a collision to be adiabatic.

In the limit of an infinitely slow variation of the posi-
tion rep(t) of the equilibrium point, the electron stays ex-
actly at the local potential minimum r = rep(t). A small
acceleration r̈ep of the equilibrium point causes a small de-
viation |r − rep| 	 ω−2|r̈ep| of the electron position from
rep; in adiabatic collisions this deviation should be small
compared to rep. For anisotropic local oscillations around
r = rep with different normal frequencies ω‖ and ω⊥ this
condition can be written as

µ‖ =
|¨̄xep cos θ + ¨̄yep sin θ|

ω̄2
‖ r̄ep

� 1, (27)

µ⊥ =
| − ¨̄xep sin θ + ¨̄yep cos θ|

ω̄2
⊥ r̄ep

� 1. (28)

Here 0 < θ < π is the angle between rep and x-axis (see
Fig. 1), so that tan θ = −b/vt; the numerators in equa-
tions (27) and (28) contain the components of acceleration
of the equilibrium point along the corresponding normal
coordinates.

For any given v̄, conditions (27) and (28) are always
fulfilled at sufficiently large values of b̄. The border value
b̄ = b̄ad between the adiabatic and non-adiabatic collisions
corresponds to the case where either µ‖ or µ⊥ becomes
comparable to 1. If we apply this criterion to the case of
high velocities v̄ � 1, we find that µ‖, µ⊥ can be evalu-
ated under the assumption that r̄1 = b̄/ sin θ � 1, when,
according to equation (A.2), r̄ep = |ϕ(r̄1)| = sin2 θ/b̄2 and
ω̄‖ = ω̄⊥ = 1. In this way we calculate

µ‖ =
v̄2

b̄2
sin2 θ|6 − 9 sin2 θ|, µ⊥ =

v̄2

b̄2
6 sin3 θ| cos θ|,

(29)
and find that µ‖ is the first to reach the value of 1 at
θ = π/2 and b̄ =

√
3 v̄. Omitting the irrelevant factor of√

3, we obtain the known result b̄ad = v̄.
At low velocities v̄ � 1, the cases of the Coulomb

attraction and repulsion become qualitatively different. In
the attraction case (δ1 = −1) the equilibrium point exists
only for r̄1 > ρ∗ = 3× 2−2/3 ≈ 1.890 (see Appendix). One
readily verifies that the radial eigenfrequency ω̄‖ vanishes
at r̄1 = ρ∗ in this case, and the condition (27) can never be
fulfilled. The latter implies that b̄ad → ρ∗ for δ1 = −1 and

v̄ → 0. In slow collisions with impact parameters b̄ < ρ∗
the electron is temporarily captured by the projectile and
performs one or more revolutions around it before it is
recaptured by the oscillator potential.

In the repulsive case (δ1 = +1) non-adiabatic collisions
occur at r̄1 = b̄/ sin θ � 1. Expanding equations (25–28)
with respect to this small parameter and retaining the first
non-vanishing terms, we get

ω̄2
‖ = 3, ω̄2

⊥ = r̄1 =
b̄

sin θ
, (30)

µ‖ =
v̄2

3b̄2
sin4 θ, µ⊥ =

2v̄2

b̄3
sin4 θ| cos θ|. (31)

Equation (31) implies that the adiabaticity is first vio-
lated along the transverse normal coordinate, where the
eigenfrequency ω̄⊥ becomes small. More precisely, with
the decreasing b̄, parameter µ⊥ is the first to reach unity
at sin2 θ = 4/5 and b̄ = (4/5)5/6 v̄2/3. From this we con-
clude that, for v̄ � 1, the adiabatic impact parameter b̄ad

is given by

b̄ad =

{
v̄2/3, δ1 = +1,

3 × 2−2/3 = 1.890, δ1 = −1.
(32)

6 Energy transfer T(v, b) in a single collision

To calculate the stopping cross-section S̄±(v̄) as a function
of the projectile velocity v̄, one needs to know the energy
transfer T̄±(v̄, b̄) as a function of two variables v̄ and b̄.
Below it is shown that a scaling law

T̄+(v̄, b̄) = v̄1/3 Φ+(b̄v̄−2/3) (33)

can be established for v̄ � 1 in the case of the repulsive
interaction; here Φ+(ξ) is a function of a single variable ξ.

6.1 Scaling law for the repulsion case

By analogy with the case of v̄ � 1, one can assume that
at low velocities the energy transfer in adiabatic collisions
drops exponentially with b̄, i.e. T̄+ ∝ exp(−Cb̄/b̄ad) ∝
exp(−Cb̄v̄−2/3), where C is a constant of order 1 [Fig. 2a
and Eq. (35) below confirm that this is indeed the case].
Hence, the range of impact parameters relevant for cal-
culating S̄+ should scale as ∆b̄ ∝ v̄2/3. Then, one can
surmise that in the limit of v̄ → 0 the transferred en-
ergy T̄+(v̄, b̄) should asymptotically obey a scaling law of
the form T̄+/v̄a → Φ+(b̄v̄−2/3), where Φ+(ξ) is a certain
function of one variable. Here we demonstrate that the
exponent a = 1/3.

Consider a collision with an impact parameter b̄ <
b̄ad = v̄2/3. For times t̄ � −b̄ad/v̄ = −v̄−1/3, before the
projectile enters the “non-adiabatic sphere” r̄1 = b̄ad, the
motion of the electron is adiabatic and follows closely the
trajectory (22) of the e.p. Then, as the projectile passes
the oscillator center at x̄ = ȳ = 0, the e.p. flips over
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Fig. 2. (a) Energy transfer T̄+ in a single collision as a function
of the impact parameter b̄ calculated by integrating equa-
tions (16) for δ1 = +1 and four different values of the projectile
velocity v̄ [all quantities are in units (8)]. Each curve is marked
by the corresponding value of the dimensionless velocity v̄.
(b) Same as (a) but in terms of the scaled quantity T̄+/v̄1/3

versus b̄/v̄2/3.

from x̄ep 	 +1 to x̄ep 	 −1 on a relatively short time
scale ∆t̄ 	 b̄/v̄ < v̄−1/3. In this phase the electron can-
not adiabatically follow the e.p., and is left behind at
x̄ 	 +1: it moves over to a new position of the e.p. in
a non-adiabatic manner on a longer time scale t̄na. One
readily verifies that this time scale is t̄na 	 v̄−1/3, and
the non-adiabatic transition occurs along the transversal
normal coordinate of local oscillations with the smaller
eigenfrequency ω̄⊥ 	 b̄

1/2
ad 	 v̄1/3. In the course of such

a transition the electron acquires an oscillation velocity
v̄e,na 	 1/t̄na = v̄1/3.

At the time t̄ � +b̄ad/v̄ = +v̄−1/3 the collision en-
ters the adiabatic phase again. By this time the electron
is found in a time-dependent potential well, oscillating
around the e.p. with a characteristic oscillation energy
Ēe,na 	 v̄2

e,na 	 v̄2/3. This oscillation energy is concen-
trated along the transversal normal coordinate with the
eigenfrequency ω̄⊥ 	 b̄

1/2
ad 	 v̄1/3. Note that the longitu-

dinal eigenfrequency remains ω̄‖ 	 1 throughout all the
collision phases. As the collision proceeds further, from
t̄ 	 +v̄−1/3 to t̄ 	 +v̄−1, the eigenfrequency ω̄⊥ is adia-
batically restored from a small value ω̄⊥ 	 v̄1/3 to ω̄⊥ = 1.
During this second adiabatic phase, the ratio Ēe/ω̄⊥ of
the electron oscillation energy Ēe to the corresponding
eigenfrequency — being an adiabatic invariant of the one-
dimensional oscillator ([7], § 49) — remains essentially
constant. As a result, the energy transfer T̄+, equal to

0.1 0.2 0.4 0.6 0.8 1 2 4
10-3

10-2

10-1

100

101

T
- (

v,
 b

)

  v = 0.5
  v = 0.25

b

Fig. 3. Same as Figure 2a but for the case of the Coulomb
attraction (δ1 = −1) for two values of the projectile velocity v̄.

the final value of the electron oscillation energy Ēe,∞, is
given by

T̄+ = Ēe,∞ 	 Ēe,na/v̄1/3 	 v̄1/3, (34)

which brings us to equation (33).

6.2 Numerical results for T̄(v̄, b̄)

The scaling law (33) can be verified by direct numerical
integration of equations (16). Figure 2 shows the results
of such calculations for the repulsion case. One clearly
sees how the widely separated curves for T̄+(v̄, b̄) from
Figure 2a collapse upon a single limiting curve in Fig-
ure 2b when reduced to the scaled variables T̄+/v̄1/3 ver-
sus b̄/v̄2/3. To an accuracy of 2–5% over the interval
0.1 < b̄/v̄2/3 < 2, this limiting curve can be approxi-
mated as

T̄+(v̄, b̄) ≈ 1.72 v̄1/3 exp

[
−1.60

b̄

v̄2/3
− 0.38

(
b̄

v̄2/3

)2
]

.

(35)
A more detailed analysis reveals that, for a fixed velocity v̄,
the function T̄+(v̄, b̄) has a weak (logarithmic) singularity
at b̄ = 0. This singularity is integrable and so weak that it
is not visible in Figure 2; consequently, it has no practical
effect on the value of the stopping cross-section S̄+(v̄).

The case of the Coulomb attraction is qualitatively dif-
ferent from that of repulsion and more difficult to analyze.
Figure 3 shows the plot of T̄−(v̄, b̄) calculated numerically
for two values of v̄ < 1. One sees that the transferred en-
ergy exhibits characteristic resonances at certain values of
the impact parameter b̄. In the limit of v̄ → 0, the first res-
onance occurs at b̄ = ρ∗ = 3× 2−2/3 (see Appendix). The
resonances occur each time the number of revolutions of
the electron around the projectile, when temporarily cap-
tured by its Coulomb field, increases by one. With the de-
creasing velocity v̄, the number of resonances increases in



14 The European Physical Journal D
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Fig. 4. Comparison of T̄+(v̄, b̄) with T̄−(v̄, b̄) for two values of
v̄ = 1 and 3. For convenience of representation the values of
T̄± for v̄ = 1 are multiplied by a factor of 0.1.

inverse proportion to v̄, and each particular resonance be-
comes more narrow. As a consequence, direct calculation
of the corresponding stopping cross-section S− by numer-
ically solving equations (16) becomes increasingly difficult
for v̄ � 0.1.

Figure 4 shows a direct comparison of T̄+(v̄, b̄) with
T̄−(v̄, b̄) for two values of the projectile velocity v̄ = 1
and 3. This plot gives an idea what range of the impact
parameters gives the main contribution to the Barkas ef-
fect (see Sect. 8 below). At high velocities, v̄ � 1, the dif-
ference between S̄+(v̄) and S̄−(v̄) is practically uniformly
accumulated over the entire interval v̄−2 � b̄ � v̄ con-
tributing to the Bohr value (11) of the Coulomb logarithm,
which is clearly manifested by the T̄±(b̄) curves for v̄ = 3.
At low velocities, v̄ < 1.52, the main contribution to the
Barkas effect comes from the vicinity of resonances in the
T̄−(b̄) dependence, as demonstrated by the v̄ = 1 curves
in Figure 4.

7 Stopping cross-section

7.1 The repulsion case

The scaling law (33) implies that the Bohr stopping cross-
section S+ for repulsively interacting projectile and bound
electron becomes proportional to v5/3 as v → 0, namely

S̄+(v̄) → 4π C+ v̄5/3, L+(v̄) → C+ v̄11/3, (36)

where C+ is a constant. By integrating equation (35) we
obtain a value of C+ ≈ 0.1995. Direct calculation of S̄+(v̄)
by numerically integrating equations (16) down to v̄ =
10−3 yields

C+ = 0.197 ± 0.001. (37)

Figure 5 shows the function v̄−2L+(v̄) = (4π)−1S̄+(v̄)
versus v̄ as calculated by solving equations (16). It has
a broad maximum around v̄ = 1.7 and falls off approx-
imately as v̄2 towards smaller v̄ over the range 0.04 �

0.1 1 10
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10-2

10-1

100

v 
-2
 L

 v

C
+
 v 5/3

v -2 L
+

v -2 L
-

Fig. 5. Velocity dependence of the Bohr stopping cross-section.
Plotted are the two dimensionless functions (4π)−1S̄±(v̄) =
v̄−2 L±(v̄). Dots on the curves correspond to actual values cal-
culated by solving the equations of motion (16). Dash-dotted
line is the asymptotic dependence (36). Thick grey curve is the
fitting formula (40).

v̄ � 0.4. The asymptotic law (36) is approached at sig-
nificantly smaller velocity values v̄ < 0.01 (not shown in
Fig. 5), which appear to be of little practical interest.

Since the Bohr stopping number L+ is a universal func-
tion of v̄ only, a simple fitting formula for it might be of
practical interest. As such, the following formula is offered
here

L+(v̄) ≈ ln(C+1 + CB v̄3)
1 + (3π/2) v̄−3 + 2.36 v̄−4 exp(−5v̄2)

. (38)

This expression is designed in such a way as (i) to re-
produce accurately both the Bohr limit and the polariza-
tion correction (42) (see Sect. 8 below) with the value of
constant

C+1 =
3π

2
CB ln

CB

CA
≈ 6.5528, (39)

and (ii) to yield S̄+(v̄) ∝ v̄2 at v̄ � 1; equation (38)
deviates from the numerical results for v̄ > 0.04 by no
more than 3%.

7.2 The attraction case

For the practically more important case of the attractive
interaction (δ1 = −1), no asymptotic scaling law, similar
to equation (33), has been found. The numerical results
shown in Figure 5 indicate that the Bohr stopping cross-
section S̄−(v̄) appears to be not an analytic function of
v̄ at v̄ < 2: it exhibits a sharp maximum at v̄ = 1.52,
followed by decaying oscillations towards smaller values
of v̄. The mountain-peak maximum occurs when the first
sharp resonance appears on the curve T̄−(b̄) (see Fig. 3).
A similar local maximum — although not so sharp and
at a smaller value of v̄ 	 0.64 — has also been observed
by the authors of reference [8] within the binary theory
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of electronic stopping. At 0.1 < v̄ < 1, the Bohr stopping
cross-section S̄−(v̄) turns out to be very nearly propor-
tional to the projectile velocity v̄.

Similarly to the repulsion case, a fitting formula can
be proposed for L−(v̄),

L−(v̄) ≈
(

1 +
3π

2
v̄−3 1.2 + v̄

1 + v̄

)
ln

(
1 +

CB v̄6

C−1 + v̄3

)
,

(40)
which for

C−1 = C−1
B +

3π

2
ln

CB

CA
= 6.7696 (41)

reproduces exactly the first two terms of the asymptotic
expansion (42) for v̄ � 1, and yields S̄−(v̄) ∝ v̄ at v̄ � 1,
as indicated by the numerical results. Interpolation (40)
is, of course, smooth and deviates significantly from the
“true” values of L−(v̄) near the sharp maximum of the
latter (see Fig. 5).

8 Barkas effect

The difference between S+ and S− (or between L+

and L−) is usually called the Barkas effect [5,8]. Ashley
et al. [9] calculated the functional form of the Barkas cor-
rection for the Bohr model in the limit of v̄ � 1, namely,

L±(v̄) = ln
(
CB v̄3

) − δ1
3π

2
v̄−3 ln

(
CA v̄3

)
, (42)

but the value of constant CA was not determined. In ref-
erence [9] the perturbative method of Bohr was extended
to the next order with respect to the displacement of the
harmonically bound electron. Hence, the result of Ashley
et al. yields the second (after the first one of Bohr) term
in the asymptotic expansion of L±(v̄) for v̄ � 1, which
may be called a polarization correction.

The present numerical results shown in Figure 5 agree
perfectly with the polarization correction of Ashley et al.,
and are accurate enough to determine the value of CA.
Figure 6 shows the plot of the quantity

CA(v̄) = v̄−3 exp
[
v̄3 (L− − L+)/3π

]
, (43)

which, according to equation (42), must approach a con-
stant value at v̄ � 1. One sees that this is indeed the case,
and that

CA = 0.3255± 0.001. (44)

The error in equation (44) stems from computational er-
rors of δL/L 	 10−6 for the L± values.

From Figure 5 one can infer that, apart from strong
fluctuations at 0.5 � v̄ � 2, the ratio L−/L+ increases
monotonically with the decreasing velocity v̄. At v̄ = 1.52,
where S̄− is maximum, we have L−/L+ = 4.9.

0 5 10 15 20
0.31

0.32

0.33

0.34

 v

C
A

Fig. 6. Function CA(v̄), as defined by equation (43), is plot-
ted by using numerical values of L±(v̄). As v̄ → ∞, CA(v̄)
should approach the value of constant CA in the polarization
correction (42) of Ashley et al. [9].

9 Discussion

There are two major restrictions for applicability of the
Bohr model, namely (i) quantum effects, and (ii) finite
ionization energies of atomic electrons. Constraints due to
a finite ionization threshold I can be evaluated by assum-
ing that the radius of action of the oscillator binding force
is restricted by the value ra 	 (I/mω2)1/2. For the repul-
sive interaction, ionization at v̄ � 1 remains classically
forbidden for all impact parameters under the condition
that Z1e

2/r2
a < mω2ra. The latter means that the appli-

cability of the Bohr model at low velocities is limited by
the condition

I �
(
Z2

1e4mω2
)1/3

. (45)

Since typically I 	 �ω, equation (45) is equivalent to a
more transparent condition I � Z2

1Ry. This condition ap-
plies to the attraction case as well. It is satisfied, for ex-
ample, for the stopping of low-Z projectiles on K-shells of
high-Z target elements.

The importance of the quantum effects at v � vs

cannot be judged on the basis of condition (3), obtained
for the Rutherford scattering of free charges. Instead, the
condition

�̄ ≡ �ω

mv2
s

=
�vs

|Z1e2| =
�ω

(Z2
1e4mω2)1/3

� 1 (46)

must be used. This condition ensures that the de Broglie
wavelength λ 	 (�/mω)1/2 of the electron in the ground
state of an oscillator is small compared to its displacement
(	 bs) during a slow collision.

The only published results of non-perturbative quan-
tum calculations [10] correspond to a fixed value of the pa-
rameter 2mv2/�ω = 10, and to an interval 0.1 < αv < 10
of the values of αv = |Z1e

2|/�v. A limited comparison
that can be made by using the plots in Figure 4 of ref-
erence [10] indicates that for �̄ ≈ 1 (v̄ ≈ 2) the quantum
values of L± are 30–40% below the corresponding classical
ones. At the same time, the ratio L−/L+ appears to be
rather insensitive to the quantum effects.

Once we notice that �ω 	 I, we find that condi-
tion (46) is the opposite of inequality (45). This means
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Fig. 7. Comparison with the experimental data from refer-
ence [11] for the Coulomb stopping of antiprotons in helium.
Solid black curve: the Bohr model with �ω = 42.3 eV. Solid
grey curve: the best fit to the experimental stopping power as
given in reference [11]. Dashed grey curves indicate the error
corridor for the experimental data.

that the low-velocity limit of the classical Bohr model is,
strictly speaking, never applicable because of either target
ionization or quantum effects.

The above conclusion does not mean, however, that
the results of the Bohr model for v < vs are completely
useless. First of all, in the absence of comprehensive quan-
tum results, the Bohr stopping power may serve as a good
starting (and/or a reference) point. Second, although the
parameter �̄ is not small in practically interesting cases,
neither is it always large. As a good characteristic exam-
ple, the stopping of antiprotons in a helium gas may be
considered. At low projectile velocities, antiprotons (and
other antinuclei) are particularly interesting from the the-
oretical point of view because they do not participate in
charge exchange events. Helium as a target material is
also of special interest because (i) it has bound electrons
in only a single atomic shell, and (ii) cannot be ionized
by antiprotons in the limit of v → 0 (at least from the
classical point of view).

Figure 7 compares the Bohr stopping power, calcu-
lated by using equation (38) for L+, with the experimental
data for antiprotons in a helium target [11] at velocities
corresponding to E > 10 keV/u, where the contribution
of the nuclear stopping is still negligible. When applying
the Bohr model, the same value of the oscillator frequency,
�ω = �〈ω〉 = 42.3 eV, was used as in the limit of high pro-
jectile velocities [12]. This value corresponds to �̄ = 1.16.

In Figure 7 it is seen that the prediction of the Bohr
model is in a reasonable agreement with the experimental
data: the difference between the two curves does not ex-
ceed 20–30%. Moreover, within the energy range 10 keV <
E < 60 keV, the dependence of the Bohr stopping power
on the projectile velocity v is practically indistinguish-
able from the velocity-proportional law, S ∝ v, whereas
the experimental results of reference [11] deviate signifi-
cantly from it. Since later experiments for antiproton stop-
ping in other materials [13] have universally confirmed the
velocity-proportional law, more accurate measurements of
the antiproton stopping in helium may, in fact, show a

better agreement with the Bohr model then the data in
Figure 7.
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Appendix

Equation (24), when rewritten as

ϕ(ρ + ϕ)2 = δ1, (A.1)

defines two functions ϕ(ρ), namely ϕ+(ρ) > 0 and
ϕ−(ρ) < 0, depending on whether δ1 = +1 or −1. From
physical considerations, we are interested in the solution
of equation (A.1) which has the limiting behaviour

ϕ(ρ, δ1) =
δ1

ρ2
− 2

ρ5
+ . . . , ρ � 1. (A.2)

The function ϕ+(ρ) is defined for all 0 ≤ ρ < ∞, and
is given by the corresponding root of the cubic equa-
tion (A.1), namely

ϕ+(ρ) = (P + Q)1/3 + (P − Q)1/3 − 2
3
ρ, (A.3)

where

P =
1
2

+
(ρ

3

)3

, Q =
[
1
4

+
(ρ

3

)3
]1/2

. (A.4)

For small ρ one has

ϕ+(ρ) = 1 − 2
3
ρ +

ρ2

9
+ . . . , ρ � 1. (A.5)

For δ1 = −1 the required solution of equation (A.1) is
given by

ϕ−(ρ) = −2
3
ρ

(
1 − cos

Θ

3

)
, (A.6)

where

cosΘ = 1 − 1
2

(
3
ρ

)3

. (A.7)

This solution exists only for

1.890 ≈ 3 × 2−2/3 = ρ∗ ≤ ρ < ∞. (A.8)

Near ρ = ρ∗ the expansion of ϕ−(ρ) has the form

ϕ−(ρ) = ϕ∗ +
22/3

√
3

(ρ − ρ∗)1/2 + . . . , 0 ≤ ρ − ρ∗ � 1,

(A.9)
where ϕ∗ = −2−2/3 ≈ −0.630.
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